Atoms as qubits J. J. García-Ripoll *IFF, CSIC Madrid* (16-4-2009) #### Ingredients for QIPC - Quantum degrees of freedom - Local operations - Measurements - One of - Entangled state sources - Universa 2qb unitaries - Error correcting schemes - Large number of qubits - Q. Communication - Q. Cryptography - Q. Simulation Q. Computation #### **Atoms** - We plan to use atoms as quantum registers. - We have a variety of degrees of freedom to choose from - Electronic orbitals - Angular momenta - Electron spin - Nuclear angular momenta - Atom position/momentum - Collective many-atom states . . . #### **Atoms** - It is convenient to focus on atoms with onely one valence e⁻ - This includes all hydrogenlike atoms both neutral and some ions: ⁴⁰Ca⁺, ²⁵Mg⁺, ⁹Be⁺, ... #### **Atoms** | | | | | | | | 18
VIIIA | |-----------|-------------------------------|--------------------------------------|-------------------------------|---------------------------------------|-------------------------------|-------------------------------|------------------------------| | | | 13
IIIA | 14
IVA | 15
VA | 16
VIA | 17
VIIA | He
2
4.00
Helium | | ATES | | 5
10.81
Baron | C
6
12.01
Carbon | 7
14.01
Nitropan | 8
16.00
0xygen | 9
19.00
Buoine | Ne
10
20.18
Neon | | 12
IIB | | A1
13
26.98
Aluminum | Si
14
28.09
Sticon | P
15
30.97
Phosphorus | \$ 16
32.07
summ | C1
17
35.45
Chlorine | Ar
18
39.95
Argon | | | Zn
90
65.39
Zm. | Ga
31
89.72
Gallium | Ge
32
72.61
60manlum | AS
33
74.92
Arsence | Se
34
78.96
84600um | Br 35 79.90 Bromine | Kr
36
83.80
Krypton | | 7 | Cd
48
112,41
Cadmium | In
49
114.82
Indum | 50
118.71 | Sb
51
121.76
Antimony | Te
52
127.60
talurum | 33
126.90
ladine | Xe
54
131.29
Xenon | | 7. | Hg
80
200.59
Mercury | T1
81
204.38
thallum | Pb
82
207.2
Lead | Bi
83
208,98
Elsmuth | Po 84 (209) Polonium | At 85 (210) Astatine | Rn
86
(222)
Radon | | d
V | Unnamed
Discovery | | Unnamed
Discovery | | Umamed
Discovery | | Unnamed
Discovery | - It is convenient to focus on atoms with onely one valence e⁻ - This includes all hydrogenlike atoms both neutral and some ions: ⁴⁰Ca⁺, ²⁵Mg⁺, ⁹Be⁺, ... #### **Atomic levels** The basic electronic levels are named $$n^{2S+1}L_J$$ - n = principal Q number - L = orbital angular momentum - **S** = spin - -J=L+S - I = nuclear ang. momt. - F = L + I #### **Atomic levels** - We get a lot of different energy separations: - Optical - Energetic microwave - Long microwaves - Not all transitions are permitted - $-\Delta M = 0 (\pi), \pm 1 (\sigma^{\pm})$ - $-\Delta L = \pm 1$ - $-\Delta J$, $\Delta F = 0$, ± 1 ### **Excited state encoding** - The ⁴⁰Ca⁺ ion is used in the experiments from Innsbruck - The qubit is encoded in a ground and an excited state. - No hyperfine splitting. - The excited state is metastable but long lived 1.5s - For this the 0-1 transition can not be dipole-allowed - Second order processes - Strong lasers ### Hyperfine encoding - The ⁹Be+ ion is used in the experiments from NIST. - The qubit is encoded in two hyperfine ground states - No decay - States have to be coupled using either - Microwave (delicate) - Raman transitions - The choice of states is still sensitive to magnetic fields. ### Hyperfine encoding - A variant being used in Maryland (Monroe). - The qubit is stored in hyperfine states. - Now m_F=0, so that coupling to magnetic fields can be prevented. - The advantange is ultrashort transitions to excited states # **Atom manipulation** ### **Atom-light interaction** - The atom sees the wave as an oscillating potential. - We can treat the problem as - A light electron - trapped by a heavy core - subject to a force - Dipole coupling Hamiltonian $$H = H_{core} + H_{light}$$ $$+ \frac{\vec{p}_e^2}{2m} + V_e(\vec{x})$$ $$+ \vec{d} \cdot \vec{E}$$ ### **Atom-light interaction** First we diagonalize everything but the coupling $$H = \sum_{nFm_F} E_{nFm_F} |nFm_F\rangle \langle nFm_F|$$ $$+ \sum_{\omega} \hbar \omega a_{\omega}^{+} a_{\omega}$$ $$+ \vec{d} \cdot \vec{E}$$ The dipole moment only has elements between different states $$\vec{d} = \sum d_{ge}(|e\rangle\langle g| + |g\rangle\langle e|)$$ ### **Atom-light interaction** The coupling ends up in the form $$H_{dip} = \Omega(|e\rangle\langle g| + |g\rangle\langle e|) \times \times (a^{+} + a)$$ For long times, the energy nonconserving terms can be neglected $$H_{RWA} = \Omega(|e\rangle\langle g|a+a^+|g\rangle\langle e|)$$ RWA = rotating wave approximation ### **Spontaneous emission** There are other coupling channels $$H_{dip} = \sum_{k \neq k'} \Omega(|e\rangle\langle g| + |g\rangle\langle e|) \times \times (a_k^+ + a_k)$$ - Atom emit into different modes from absorbed photon - When tracing out the lost photons, decoherence $$\rho \rightarrow (1-\varepsilon)\rho + \epsilon \sigma^- \rho \sigma^+$$ ### Quantum register preparation ### Quantum register preparation - An essential step in the quantum computation. - We do not need to prepare an arbitrary state. - We just need to reset the ions to the same state and use unitaries. $$F=0$$ $$F=1$$ $$m=-1$$ $$S_{1/2}$$ $$S_{1/2}$$ $^{111}Cd^{+}$ (I=1/2) ### Optical pumping - An essential step in the quantum computation. - We do not need to prepare an arbitrary state. - We just need to reset the ions to the same state and use unitaries. - We pump atoms with the same polarization, σ⁺ ### Optical pumping - An essential step in the quantum computation. - We do not need to prepare an arbitrary state. - We just need to reset the ions to the same state and use unitaries. - We pump atoms with the same polarization, σ⁺ - A fraction of the atoms decays with smaller m_F - Total net flow towards m_F=+1 # Measurements #### Measurement A process to accurately distinguish the qubit 0 and 1. #### Electron shelving - Pump the 0 state to an auxiliary state. - The transition is forbidden for the 1 state. - The excited state decays emitting photon - Repeat until enough photons are gathered. #### Measurement - Projective measurement - Atom ends up in 0 or 1 - It can be repeated indefinitely. - Lots of photons compensate for bad detector efficiency - Almost 100% accuracy - Best qubit measurements ever! - Better done at the end - Scattered photons may affect neighboring atoms. #### Measurement - Projective measurement - Atom ends up in 0 or 1 - It can be repeated indefinitely. - Lots of photons compensate for bad detector efficiency - Almost 100% accuracy - Best qubit measurements ever! - Better done at the end - Scattered photons may affect neighboring atoms. # Single qubit rotations An ideal but realistic case is when only two levels are coupled: $$H_{RWA} = \omega_a \sigma_z + \omega_l a^+ a +$$ $$+ \Omega(|e\rangle\langle g|a + a^+|g\rangle\langle e|)$$ - Physical parameters - Detuning $\delta = \omega_l \omega_a$ - Rabi frequency $\, \Omega \,$ - Integrable, oscillations between ground and excited state. Not useful for doing qubit gates: Light and atom are entangled. - Not useful for doing qubit gates: Light and atom are entangled. - We have to consider the incoming light as "classical" coherent beam. $$a|\alpha\rangle\propto|\alpha\rangle$$ - Not useful for doing qubit gates: Light and atom are entangled. - We have to consider the incoming light as "classical" coherent beam. $$a|\alpha\rangle\propto|\alpha\rangle$$ But using resonant processes means the atom can decay! Rabi oscillations for a trapped Ca ion #### Raman transitions When the light is largely detuned (off-resonance) $$\delta = \omega_l - \omega_a \gg \Omega$$ we have to consider second order processes. The effective Hamiltonian may include coupling between hyperfine levels $$H_{eff} \sim \hbar \frac{\Omega^{2}}{\Delta} (|1\rangle\langle 0| + |0\rangle\langle 1|) + \frac{E_{hfs}}{2} (|1\rangle\langle 1| - |0\rangle\langle 0|)$$ ### **Arbitrary unitaries** With this Hamiltonian we have enough to perform any singlequbit rotation $$H_{eff} = \hbar \frac{\Omega^2}{\Delta} (|1\rangle\langle 0| + |0\rangle\langle 1|) + \frac{E_{hfs}}{2} (|1\rangle\langle 1| - |0\rangle\langle 0|)$$ identify Pauli operators $$H_{eff} = \hbar \frac{\Omega^2}{\Delta} \sigma_x + \frac{E_{hfs}}{2} \sigma_z$$ Both Ω and E_{hfs} can be tuned by changing the laser intensity and applying magnetic fields. H, S, Z are direct. T requires combining X and Z rotations.