Ultracold neutral atoms

J. J. García-Ripoll *IFF, CSIC Madrid*

(16-4-2009)

Atoms

 Instead of ions, which couple strongly to the environment, use **neutral** atoms.

Good:

- Long lived coherences
- Weaker interactions
- Less energy to trap many
 - Large, scalable

Bad:

- Weak interactions
- Trapping?
- Cooling?

Trapping

Magnetic trapping

 Hamiltonian for an atom with HFS and magnetic field

$$A\vec{J}\vec{I} + g_J\vec{J}\cdot\vec{B} + g_J\vec{I}\cdot\vec{B}$$

with

$$g_I \ll g_J$$

 This can not be diagonalized in the basis of total angular momentum

$$\vec{F} = \vec{J} + \vec{I}$$

because only

$$F_z = I_z + J_z$$

along B is conserved

Magnetic trapping

 We get a linear and quadratic Zeeman splitting

$$E_{m_F=\pm 2} = \frac{3}{4} A \pm \frac{1}{2} C$$

$$E_{m_F=+1} = -\frac{1}{4} A \pm \sqrt{\frac{3}{4} A^2 + \frac{1}{4} (A - C)^2}$$

$$E_{m_F=-1} = -\frac{1}{4} A \pm \sqrt{\frac{3}{4} A^2 + \frac{1}{4} (A+C)^2}$$

$$E_{m_F=0} = -\frac{1}{4} A \pm \sqrt{A^2 + \frac{1}{4} C^2}$$

with
$$C = |g_J B|$$

Magnetic trapping

- We can trap the low-field seekers
 - Atoms that tend towards small value of |B|
- Majorana flips: when B=0, the atom magnetic moment can flip at no cost, becoming untrapped.
- Ioffe-Pritchard and cloverleaf traps combine quadrupole potentials with coils that shift the minimum to nonzero B.

Optical trapping

Light force

- When off-resonant light acts on an atom, it induces an energy shift
 - AC Stark shift

$$V_{AC} \sim -\frac{\Omega(x)^2}{\Delta}$$

Second order pert. theory

$$|g\rangle\langle g|H_{l-at}|e\rangle\times\frac{1}{E_g+\hbar\omega-E_e}$$

$$\times\langle e|H_{l-at}|g\rangle\langle g|$$

Light force

- When off-resonant light acts on an atom, it induces an energy shift
 - AC Stark shift

$$V_{AC} \sim -\frac{\Omega(x)^2}{\Delta}$$

- The potential depends on the light intensity.
- Different detunings
 - Red: attracted to maxima
 - Blue: attracted to minima

Light force

- When off-resonant light acts on an atom, it induces an energy shift
 - AC Stark shift

$$V_{AC} \sim -\frac{\Omega(x)^2}{\Lambda}$$

- The potential depends on the light intensity.
- Different detunings
 - Red: attracted to maxima
 - Blue: attracted to minima

Cooling

Doppler cooling

 When an atom travels against a laser beam, it "sees" a different frequency

$$f = \left(1 - \frac{v_{at-l}}{c}\right) f_0$$

- The atom turns into resonance, absorbing a photon and slowing down.
- Photon reemitted, but avg. kinetic energy decreases.
- Minimum temperature

$$T_{min} = \frac{\hbar}{k_B} \gamma$$

- Principle by which a cup of coffee cools down
 - Hotter particles evaporate, taking away energy.
- Since it is an open system, an equilibrium is reached
 - Environment temperature
- Particles are lost.

Trap the atoms in some potential.

- Trap the atoms in some potential.
- Open up the potential

- Trap the atoms in some potential.
- Open up the potential.
- Let the hotter atoms evaporate.

$$\psi(x_{1,}x_{2,}...)=\phi(x_{1})\phi(x_{2})\cdots$$

- Trap the atoms in some potential.
- Open up the potential.
- Let the hotter atoms evaporate.
- The remaining atoms thermalize to a new T.
- If density is high and temperature low, and we have bosons...
 - Bose-Einstein condensation

Bose-Einstein condesate

$$\psi(x_1, x_2, \ldots) = \phi(x_1)\phi(x_2)\cdots$$

Nobel prize!!!

Bose-Einstein condesate

$$\psi(x_1, x_2, \ldots) = \phi(x_1)\phi(x_2)\cdots$$

Source of ultracold atoms, with the same motional state. We only care about internal state now!