Publications of Tomás Levy-Yeyati

Publications list derived from arXiv and ORCID with 3 entries.

3. Engineering giant transmon molecules as mediators of conditional two-photon gates

Tomás Levy-Yeyati, Tomás Ramos, Alejandro González-Tudela
Artificial atoms non-locally coupled to waveguides — the so-called giant atoms — offer new opportunities for the control of light and matter. In this work, we show how to use an array of non-locally coupled transmon “molecules” to engineer a passive photonic controlled gate for waveguide photons. In particular, we show that a conditional elastic phase shift between counter-propagating photons arises from the interplay between direction-dependent couplings, engineered through an interplay of non local interactions and molecular binding strength; and the nonlinearity of the transmon array. We analyze the conditions under which a maximal $\pi$-phase shift — and hence a CZ gate — is obtained, and characterize the gate fidelity as a function of key experimental parameters, including finite transmon nonlinearities, emitter spectral inhomogeneities, and limited cooperativity. Our work opens the use of giant atoms as key elements of microwave photonic quantum computing devices.

2. Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED

Tomás Levy-Yeyati, Carlos Vega, Tomás Ramos, Alejandro González-Tudela
Engineering deterministic photonic gates with simple resources is one of the long-standing challenges in photonic quantum computing. Here, we design a passive conditional gate between co-propagating photons using an array of only two-level emitters. The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes with different resonant momenta at the emitter’s transition frequency. By studying the system’s multi-photon scattering response, we demonstrate that, in certain limits, this configuration induces a non-linear $\pi$-phase shift between the polariton eigenstates of the system without distorting spectrally the wavepackets. Then, we show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings, with a fidelity arbitrarily close to 1 in the limit of large number of emitters and coupling efficiency. Our configuration can be implemented in topological photonic platforms with multiple chiral edge modes, opening their use for quantum information processing, or in other setups where such chiral multi-mode waveguide scenario can be obtained, e.g., in spin-orbit coupled optical fibers or photonic crystal waveguides.

1. Passive Photonic CZ Gate with Two-Level Emitters in Chiral Multimode Waveguide QED

Tomás Levy-Yeyati, Carlos Vega, Tomás Ramos, Alejandro González-Tudela
Engineering deterministic photonic gates with simple resources is one of the long-standing challenges in photonic quantum computing. Here, we design a passive conditional gate between co-propagating photons using an array of only two-level emitters. The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes with different resonant momenta at the emitter’s transition frequency. By studying the system’s multi-photon scattering response, we demonstrate that, in certain limits, this configuration induces a non-linear $\pi$-phase shift between the polariton eigenstates of the system without distorting spectrally the wavepackets. Then, we show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings, with a fidelity arbitrarily close to 1 in the limit of large number of emitters and coupling efficiency. Our configuration can be implemented in topological photonic platforms with multiple chiral edge modes, opening their use for quantum information processing, or in other setups where such chiral multi-mode waveguide scenario can be obtained, e.g., in spin-orbit coupled optical fibers or photonic crystal waveguides.

Creation log.