Publications

Converting long-range entanglement into mixture: tensor-network approach to local equilibration

M Frías-Pérez, L Tagliacozzo, MC Bañuls
In the out-of-equilibrium evolution induced by a quench, fast degrees of freedom generate long-range entanglement that is hard to encode with standard tensor networks. However, local observables only sense such long-range correlations through their contribution to the reduced local state as a mixture. We present a tensor network method that identifies such long-range entanglement and efficiently transforms it into mixture, much easier to represent. In this way, we obtain an effective description of the time-evolved state as a density matrix that captures the long-time behavior of local operators with finite computational resources.

Edge-dependent anomalous topology in synthetic photonic lattices subject to discrete step walks

Rabih El Sokhen, Álvaro Gómez-León, Albert F. Adiyatullin, Stéphane Randoux, Pierre Delplace and Alberto Amo
Anomalous topological phases, where edge states coexist with topologically trivial Chern bands, can only appear in periodically driven lattices. When the driving is smooth and continuous, the bulk-edge correspondence is guaranteed by the existence of a bulk invariant known as the winding number. However, in lattices subject to periodic discrete step walks the existence of edge states does not only depend on bulk invariants but also on the boundary. This is a consequence of the absence of an intrinsic time dependence or micromotion in discrete step walks. We report the observation of edge states and a simultaneous measurement of the bulk invariants in anomalous topological phases in a two-dimensional synthetic photonic lattice subject to discrete step walks. The lattice is implemented using time multiplexing of light pulses in two coupled fibre rings, in which one of the dimensions displays real-space dynamics and the other one is parametric. The presence of edge states is inherent to the periodic driving and depends on the properties of the boundary in the implemented two-band model with zero Chern number. We provide a suitable expression for the topological invariants whose calculation does not rely on micromotion dynamics.

Spectral Properties of 1+1D Abelian Higgs model

Titas Chanda, Marcello Dalmonte, Maciej Lewenstein, Jakub Zakrzewski, Luca Tagliacozzo
The presence of gauge symmetry in 1+1 dimensions is known to be redundant, since it does not imply the existence of dynamical gauge bosons. As a consequence, in the continuum, the Abelian-Higgs model (i.e., the theory of bosonic matter interacting with photons) just possesses a single phase, as the higher-dimensional Higgs and Coulomb phases are connected via nonperturbative effects. However, recent research published in Phys. Rev. Lett. 128, 090601 (2022) has revealed an unexpected phase transition when the system is discretized on the lattice. This transition is described by a conformal field theory with a central charge of c=3/2. In this paper, we aim to characterize the two components of this c=3/2 theory—namely the free Majorana fermionic and bosonic parts—through equilibrium and out-of-equilibrium spectral analyses.