Publications of Juan José Rodríguez-Aldavero

Publications list derived from arXiv and ORCID with 2 entries.

2. SeeMPS: A Python-based Matrix Product State and Tensor Train Library

Paula García-Molina, Juan José Rodríguez-Aldavero, Jorge Gidi, Juan José García-Ripoll
We introduce SeeMPS, a Python library dedicated to implementing tensor network algorithms based on the well-known Matrix Product States (MPS) and Quantized Tensor Train (QTT) formalisms. SeeMPS is implemented as a complete finite precision linear algebra package where exponentially large vector spaces are compressed using the MPS/TT formalism. It enables both low-level operations, such as vector addition, linear transformations, and Hadamard products, as well as high-level algorithms, including the approximation of linear equations, eigenvalue computations, and exponentially efficient Fourier transforms. This library can be used for traditional quantum many-body physics applications and also for quantum-inspired numerical analysis problems, such as solving PDEs, interpolating and integrating multidimensional functions, sampling multivariate probability distributions, etc.

1. Chebyshev approximation and composition of functions in matrix product states for quantum-inspired numerical analysis

Juan José Rodríguez-Aldavero, Paula García-Molina, Luca Tagliacozzo, Juan José García-Ripoll
This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.

Creation log.