Emergent causality and the N-photon scattering matrix in waveguide QED

E. Sánchez Burillo, A. Cadarso, L. Martín-Moreno, J. J. García-Ripoll, D. Zueco
In this work we discuss the emergence of approximate causality in a general setup from waveguide QED—i.e. a one-dimensional propagating field interacting with a scatterer. We prove that this emergent causality translates into a structure for the N-photon scattering matrix. Our work builds on the derivation of a Lieb–Robinson-type bound for continuous models and for all coupling strengths, as well as on several intermediate results, of which we highlight: (i) the asymptotic independence of space-like separated wave packets, (ii) the proper definition of input and output scattering states, and (iii) the characterization of the ground state and correlations in the model. We illustrate our formal results by analyzing the two-photon scattering from a quantum impurity in the ultrastrong coupling regime, verifying the cluster decomposition and ground-state nature. Besides, we generalize the cluster decomposition if inelastic or Raman scattering occurs, finding the structure of the -matrix in momentum space for linear dispersion relations. In this case, we compute the decay of the fluorescence (photon–photon correlations) caused by this S-matrix.

Quantum decoherence of phonons in Bose-Einstein condensates

Richard Howl, Carlos Sabín, Lucia Hackermuller, Ivette Fuentes
We apply modern techniques from quantum optics and quantum information science to Bose–Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.